We make every effort to publish in Open-Access journals, pay for early-release and open options when offered, and upload manuscripts to bioRxiv prior to publication. For older manuscripts that may be behind paywalls, copies for personal use are provided. Updated lists are always available at ORCID, or Google Scholar.



Choi S, Chan CH, Bond DR. 2022. Lack of specificity in Geobacter periplasmic electron transfer. Journal of Bacteriology. 204:12 e00322-22. link to paper 

  • Journal of Bacteriology  'Editor's Pick' 

Single amino acid residues control potential-dependent inactivation of an inner membrane bc-cytochrome. Komal Joshi, Chi Ho Chan, Caleb E Levar, Daniel R Bond. 2022. ChemElectroChem. e202200907. link to paper

  • Selected as Cover Feature in ChemElectroChem. Read about the team that solved this problem and why it was so fun. 

Wang F, Chan CH, Suciu V, Mustafa K, Ammend M, Si D, Hochbaum AI, Egelman EH, Bond DR. 2022. Structure of Geobacter OmcZ filaments suggests extracellular cytochrome polymers evolved independently multiple times. eLife. Sep 5;11:e81551. doi: 10.7554/eLife.81551. PMID: 36062910. paper

Wang F, Mustafa K, Suciu V, Joshi K, Chan CH, Choi S, Su Z, Si D, Hochbaum AI, Egelman EH, Bond DR. 2022. Cryo-EM structure of an extracellular Geobacter OmcE cytochrome filament reveals tetrahaem packing. Nat Microbiol. 2022 Aug;7(8):1291-1300. doi: 10.1038/s41564-022-01159-z. Epub 2022 Jul 7. PMID: 35798889; PMCID: PMC9357133. paper

Tan Z, Chan CH, Maleska M, Banuelos Jara B, Lohman BK, Ricks NJ, Bond DR, Hammond MC. 2022. The signaling pathway that cGAMP riboswitches found: Analysis and application of riboswitches to study cGAMP signaling in Geobacter sulfurreducens. Int J Mol Sci. Jan 21;23(3):1183. doi: 10.3390/ijms23031183. PMID: 35163114 paper

Joshi K, Chan CH, Bond DR. 2021. Geobacter sulfurreducens inner membrane cytochrome CbcBA controls electron transfer and growth yield near the energetic limit of respiration. Molecular Microbiology. 2021-09-09. paper data repository

Jiménez Otero, FJ, Chadwick GL, Yates M, Mickol RL, Saunders SH, Glaven SM, Gralnick JA, Newman DK, Tender LM, Orphan VJ, Bond DR. 2021. Evidence of a streamlined extracellular electron transfer pathway from biofilm structure, metabolic stratification, and long-range electron transfer parameters. Appl. Environ. Microbiol. 87:17: e00706-21. paper

Kees ED, Levar CE, Miller SP, Bond DR, Gralnick JA, Dean AM. 2021. Survival of the first rather than the fittest in a Shewanella electrode biofilm. Commun. Biol 4, 536. paper

Sheik CS, Badalamenti JP, Telling J, Hsu D, Alexander SC, Bond DR, Gralnick JA, Lollar BS, Toner BM. 2021. Novel microbial groups drive productivity in an Archean Iron formation. Front. Microbiol. 12:616. paper

Starwalt-Lee, R., El-Naggar, MY., Bond, DR., Gralnick, JA. 2021. Electrolocation? The evidence for redox-mediated taxis in Shewanella oneidensis. Molecular Microbiology; 115: 1069– 1079. paper


Conley BE., Weinstock MT, Bond DR, Gralnick JA. 2020. A hybrid extracellular electron transfer pathway enhances the survival of Vibrio natriegens. Appl. Environ. Microbiol. 86:e01253-20. paper

Chadwick GL, Otero FJ, Gralnick JA, Bond DR, Orphan VJ. 2019. NanoSIMS imaging reveals metabolic stratification within current-producing biofilms. Proceedings of the National Academy of Sciences USA, 116(41), 20716-20724. paper

Joshi K, Kane AL, Kotloski NJ, Gralnick JA, Bond DR. (2019). Preventing hydrogen disposal increases electrode utilization efficiency by Shewanella oneidensis. Front. Energy Res., 7. paper

Hallberg Z, Chan CH, Wright T, Kranzusch PJ, Doxzen KW, Park JJ, Bond DR, Hammond MC. 2019. Structure and mechanism of a Hypr GGDEF enzyme that activates cGAMP signaling to control extracellular metal respiration. eLife 2019;8:e43959. paper

Jiménez Otero F, Chan CH, Bond DR. 2018. Identification of different putative outer membrane electron conduits necessary for Fe(III) citrate, Fe(III) oxide, Mn(IV) oxide, or electrode reduction by Geobacter sulfurreducens. Journal of Bacteriology 200(19) e00347-18. PDF

Conley BE, Intile PJ, Bond DR, Gralnick JA. 2018. Divergent Nrf-family proteins and MtrCAB homologs facilitate extracellular electron transfer in Aeromonas hydrophila. Applied and Environmental Microbiology. 02134-18. epub

Levar CE, Hoffman CL, Dunshee AJ, Toner BM, Bond DR. 2017. Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducensISME Journal 11, 741–752. doi:10.1038/ismej.2016.146.  PDF

Zacharoff L, Morrone DJ,  Bond DR. 2017. Geobacter sulfurreducens extracellular multiheme cytochrome PgcA facilitates respiration to Fe(III) oxides but not electrodes. Frontiers in Microbiology 7:913. doi: 10.3389/fmicb.2017.02481. Link

Chan CH, Levar CE, Jiménez Otero F, Bond DR. 2017. Genome scale mutational analysis of Geobacter sulfurreducens reveals distinct molecular mechanisms for respiration of poised electrodes vs. Fe(III) oxides. Journal of Bacteriology 199(19) e00340-17. doi: 10.1128/JB.00340-17PDF

  • For easy instructions on how to download data sets, obtain annotated versions of our resequenced Geobacter sulfurreducens genome, or view the cool transposon mapping data to identify essential genes or regions within the genome, see this supplement from the Tn-Seq paper.

Badalamenti JP, Summers ZM, Chan CH, Gralnick JA, Bond DR. 2016. Isolation and genomic characterization of ‘Desulfuromonas soudanensis WTL’, a metal- and electrode-respiring bacterium from anoxic deep subsurface brine. Frontiers in Microbiology 7:913. Link

Zacharoff L, Chan CH,  Bond DR. 2016. Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducensBioelectrochemistry 107:7-13. PDF

Lusk BG, Badalamenti JP, Parameswaran P, Bond DR, Torres CI. 2015. Draft genome sequence of the Gram-positive thermophilic iron reducer Thermincola ferriacetica strain Z-0001TGenome Announcements 3(5):e01072-15. PDF

Chan CH, Levar CE, Zacharoff L, Badalamenti JP, Bond DR. 2015. Scarless genome editing and stable inducible expression vectors for Geobacter sulfurreducensApplied and Environmental Microbiology 81(20):7178–7186. PDF

Badalamenti JP, Krajmalnik-Brown R, Torres CI, Bond DR. 2015. Genomes of Geoalkalibacter ferrihydriticus Z-0531Tand Geoalkalibacter subterraneus Red1T, two haloalkaliphilic metal-reducing Deltaproteobacteria. Genome Announcements 3(2):e00039-15.  PDF  G. subterraneus  G. ferrihydriticus

Badalamenti JP, Bond DR. 2015. Complete genome of Geobacter pickeringii G13T, a metal-reducing isolate from sedimentary kaolin deposits. Genome Announcements 3(2):e00038-15. PDF  NCBI

Levar CE, Chan CH, Mehta-Kolte MG, Bond DR. 2014. An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors. mBio 5(6):e02034-14.  PDF

  • Related UMN press release: "Researchers discover surprising versatility in bacteria that derive energy from metals" LINK

Liu Y, Wang Z, Liu J, Levar C, Edwards MJ, Babauta JT, Kennedy DW, Shi Z, Beyenal H, Bond DR, Clarke TA, Butt JN, Richardson DJ, Rosso KM, Zachara JM, Fredrickson JK, Shi L. 2014. A trans‐outer membrane porin‐cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA. Enviromental Microbiology Reports 6:776–785.  PDF

Stephen CS, LaBelle EV, Brantley SL, Bond DR. 2014. Abundance of the multiheme c-type cytochrome OmcB increases in outer biofilm layers of electrode-grown Geobacter sulfurreducensPLoS ONE 9:e104336.  PDF

Kane AL, Bond DR, Gralnick JA. 2012. Electrochemical analysis of Shewanella oneidensis engineered to bind gold electrodes. ACS Synthetic Biology 2:93–101. PDF

Summers ZM, Gralnick JA, Bond DR. 2013. Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes. mBio 4:e00420–12.  PDF

Mehta-Kolte MG, Bond DR. 2012. Geothrix fermentans secretes two different redox active compounds to utilize electron acceptors across a wide potential window. Applied and Environmental Microbiology 78:6987–6995.  PDF

Bond DR, Strycharz-Glaven SM, Tender LM, Torres CI. 2012. On electron transport through Geobacter biofilms. ChemSusChem 5:1099–1105.  PDF

Liu Y, Bond DR. 2012. Long-distance electron transfer by G. sulfurreducens biofilms results in accumulation of reduced c-type cytochromes. ChemSusChem 5:1047–1053.  PDF

book chapter  Levar CE, Rollefson JB, Bond DR. 2012. Energetic and molecular constraints on the mechanism of environmental Fe(III) reduction by Geobacter.  In: Gescher J, Kappler A (eds.). Microbial Metal Respiration: From Geochemistry to Potential Applications. Springer, London; pp. 29–48.  PDF

Qian Y, Paquete CM, Louro RO, Ross DE, LaBelle E, Bond DR, Tien M. 2011. Mapping the iron binding site(s) on the small tetraheme cytochrome of Shewanella oneidensis MR-1. Biochemistry 50:6217–6224. PDF

Liu Y, Kim H, Franklin RR, Bond DR. 2011. Linking spectral and electrochemical analysis to monitor c-type cytochrome redox status in living Geobacter sulfurreducens biofilms. ChemPhysChem 12:2235–2241.  PDF

Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR. 2011. Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS ONE 6:e16649.  PDF

Rollefson JB, Stephen CS, Tien M, Bond DR. 2011. Identification of an extracellular polysaccharide network essential for cytochrome anchoring and biofilm formation in Geobacter sulfurreducensJournal of Bacteriology 193:1023–1033.  PDF  Supplemental Data


Flynn JM, Ross DE, Hunt KA, Bond DR, Gralnick JA. 2010. Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. mBio 1:e00190–10.  PDF

Johnson ET, Baron DB, Naranjo B, Bond DR, Schmidt-Dannert C, Gralnick JA. 2010. Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping. Applied and Environmental Microbiology 76:4123–4129.  PDF  Supplemental Data

Coursolle D, Baron DB, Bond DR, Gralnick JA. 2010. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensisJournal of Bacteriology 192:467–474.  PDF

Liu Y, Kim H, Franklin R, Bond DR. 2010. Gold line array electrodes increase substrate affinity and current density of electricity-producing G. sulfurreducens biofilms. Energy and Environmental Science 3:1782–1788.  PDF

Marsili E, Sun J, Bond DR. 2010. Voltammetry and growth physiology of Geobacter sulfurreducens biofilms as a function of growth stage and imposed electrode potential. Electroanalysis 22:865–874.  PDF

book chapter  Bond DR, 2010.  Electrodes as electron acceptors, and the bacteria who love them. In: Geomicrobiology: Molecular and Environmental Perspectives. Larry Barton, Martin Mandl, and Alexander Loy (Editors). Springer.  PDF

Baron D, LaBelle E, Coursolle D, Gralnick JA, Bond DR. 2009. Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. Journal of Biological Chemistry 284:28865–28873.  PDF

Rollefson JB, Levar CE, Bond DR. 2009. Identification of genes involved in biofilm formation and respiration via mini-Himar transposon mutagenesis of Geobacter sulfurreducensJournal of Bacteriology 191:4207–4217.  PDF  Supplemental Data

book chapter  LaBelle E, Bond DR. 2009.  Cyclic voltammetry of electrode-attached bacteria. In: Bio-electrochemical systems: from extracellular electron transfer to biotechnological application. Integrated Environmental Technology Series,  Dr. Ir. Piet Lens (Ed.), Wageningen University, The Netherlands.  PDF

Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. 2008. Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences of the United States of America105:3968–3973.  PDF

Marsili E, Rollefson JB, Baron DB, Hozalski RM, Bond DR. 2008. Microbial biofilm voltammetry: Direct electrochemical characterization of catalytic electrode-attached biofilms. Applied and Environmental Microbiology74:7329–7337.  PDF

Srikanth S, Marsili E, Flickinger MC, Bond DR. 2008. Electrochemical characterization of Geobacter sulfurreducenscells immobilized on graphite paper electrodes. Biotechnology and Bioengineering 99:1065–1073.  PDF

Ragoonanan V, Malsam J, Bond DR, Aksan A. 2008. Roles of membrane structure and phase transition on the hyperosmotic stress survival of Geobacter sulfurreducensBiochimica et Biophysica Acta (BBA) - Biomembranes1778:2283–2290.  PDF

book chapter  Bond DR.  2007. Growth of Electrode-Reducing Bacteria. Manual of Environmental Microbiology (3rd ed.). Editors: Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL, Stetzenbach LD. ASM Press. Chapter 93.  PDF

Flickinger MC, Schottel JL, Bond DR, Aksan A, Scriven LE. 2007. Painting and printing living bacteria: Engineering nanoporous biocatalytic coatings to preserve microbial viability and intensify reactivity. Biotechnology Progress 23:2–17.  PDF

Postdoc papers from the University of Massachusetts

Mahadevan R, Bond DR, Butler JE, Esteve-Nuñez A, Coppi MV, Palsson BO, Schilling CH, Lovley DR. 2006. Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Applied and Environmental Microbiology 72:1558–1568.  PDF

Butler JE, Glaven RH, Esteve-Núñez A, Núñez C, Shelobolina ES, Bond DR, Lovley DR. 2006. Genetic characterization of a single bifunctional enzyme for fumarate reduction and succinate oxidation in Geobacter sulfurreducens and engineering of fumarate reduction in Geobacter metallireducensJournal of Bacteriology 188:450–455.  PDF

Bond DR, Mester T, Nesbø CL, Izquierdo-Lopez AV, Collart FL, Lovley DR. 2005. Characterization of citrate synthase from Geobacter sulfurreducens and evidence for a family of citrate synthases similar to those of eukaryotes throughout the GeobacteraceaeApplied and Environmental Microbiology 71:3858–3865.  PDF

Bond DR, Lovley DR. 2005. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentansApplied and Environmental Microbiology 71:2186–2189.  PDF

Holmes DE, Bond DR, O’Neil RA, Reimers CE, Tender LR, Lovley DR. 2004. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microbial Ecology 48:178–190.  PDF

Holmes DE, Nicoll JS, Bond DR, Lovley DR. 2004. Potential role of a novel psychrotolerant member of the family GeobacteraceaeGeopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Applied and Environmental Microbiology 70:6023–6030.  PDF

Gregory KB, Bond DR, Lovley DR. 2004. Graphite electrodes as electron donors for anaerobic respiration. Environmental Microbiology 6:596–604.  PDF

Holmes DE, Bond DR, Lovley DR. 2004. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Applied and Environmental Microbiology 70:1234–1237.  PDF

Bond DR, Lovley DR. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology 69:1548–1555.  PDF

Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovley DR. 2002. Harnessing microbially generated power on the seafloor. Nature Biotechnology 20:821–825.  PDF

  • related comment in Nature Biotechnology: E.F. DeLong and P. Chandler, “Power from the Deep”  PDF

Bond DR, Holmes DE, Tender LM, Lovley DR. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485.  PDF

  • related comment in Science: E. Pennisi,  “Microbes use mud to make electricity”  PDF

Bond DR, Lovley DR. 2002. Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environmental Microbiology 4:115–124.  PDF

Papers about cows

Kim YJ, Liu RH, Bond DR, Russell JB. 2000. Effect of linoleic acid concentration on conjugated linoleic acid production by Butyrivibrio fibrisolvens A38. Applied and Environmental Microbiology 66:5226–5230.  PDF

Bond DR, Russell JB. 2000. Protonmotive force regulates the membrane conductance of Streptococcus bovis in a non-ohmic fashion. Microbiology 146(3):687–694.  PDF

Bond DR, Tsai BM, Russell JB. 1999. Physiological characterization of Streptococcus bovis mutants that can resist 2-deoxyglucose-induced lysis. Microbiology 145(10):2977–2985.  PDF

Diez-Gonzalez F, Bond DR, Jennings E, Russell JB. 1999. Alternative schemes of butyrate production in Butyrivibrio fibrisolvens and their relationship to acetate utilization, lactate production, and phylogeny. Archives of Microbiology171:324–330.  PDF

Bond DR, Tsai BM, Russell JB. 1998. The diversion of lactose carbon through the tagatose pathway reduces the intracellular fructose 1,6-bisphosphate and growth rate of Streptococcus bovisApplied Microbiology and Biotechnology49:600–605.  PDF

Bond DR, Russell JB. 1998. Relationship between intracellular phosphate, proton motive force, and rate of nongrowth energy dissipation (energy spilling) in Streptococcus bovis JB1. Applied and Environmental Microbiology 64:976–981.  PDF

Russell JB, Bond DR, Cook GM. 1996. The fructose diphosphate/phosphate regulation of carbohydrate metabolism in low G+C Gram-positive anaerobes. Research in Microbiology 147:528–535.  PDF

Bond DR, Russell JB. 1996. A role for fructose 1,6-diphosphate in the ATPase-mediated energy-spilling reaction of Streptococcus bovisApplied and Environmental Microbiology 62:2095–2099.  PDF